Algae Control

Algae are tiny plants that bloom and grow in swimming pools if nutrients are present and a sufficient level of free chlorine is not maintained. Below are descriptions of the three most common algae problems in swimming pools.

Green Algae The most common algae in swimming pool floats in water and coats pool surfaces. Left unchecked green algae will very quickly turn the pool water pea green.

Mustard Algae settles on pool walls and causes a slimy yellow film.

Black Algae appears in “buds” or clumps attached to tile grout, corners, steps and pool surfaces.

Solution:


Green Algae – is very susceptible to chemical treatment. Superchlorinate with 10 to 20 ppm chlorine in the evening. Keep the filter running and brush the pool walls and bottom. Periodically check chlorine and maintain above 3 ppm until water clears. Using an algicide containing quaternary ammonia the next morning will help prevent the return of green algae. 

Mustard Algae – is much more resistant to chemical treatment and clings more tightly to pool walls than green algae. Adjust pH and superchlorinate as for green algae then brush diligently. Later vacuum the pool, check chlorine and superchorinate again if necessary. Mustard algae will generally return unless treated with a special mustard algicide or a copper based algicide. Algicide should be added in the morning to treat algae in daylight – its most active period.

Black Algae – is very difficult to get rid of. It can be controlled to some extent by frequent superchlorination and diligent brushing with a stiff brush. Spot treatments can be made by turning off the recirculation pumps and pouring granular chlorine directly on recently brushed spots. Trichlor tablets can also be rubbed on recently brushed areas to spot treat. Black algae can usually be controlled with the use of strong alicides and maintenance of relatively high free chlorine residual, but complete removal of black algae may require draining and cleaning the pool.

Note: Algae blooms are a problem best avoided. Maintaining proper water quality and frequent brushing of pool walls will deprive algae of the opportunity to get started.

Supplemental Disinfection Equipment

A variety of supplemental disinfection process equipment is being marketed for use on swimming pools. The most common are copper/silver ion generators, ozone generators, and ultraviolet light generators. While each process provides some disinfection activity, they are not accepted as primary disinfectants in public swimming pools because they are either too slow or do not provide a disinfectant residual. Supplemental disinfection equipment, if used, must be used in conjunction with a free chlorine or bromine residual.

Biganide Disinfectants

The only disinfectant other than chlorine and bromine which has been accepted as a primary disinfectant in public swimming pools is polyhexamethylene biguanide. Biguanide is used at a concentration of 30 to 50 parts per million and a pH of 7.2 to 7.8 to kill germs and control algae growth. A special test kit is needed to test the biguanide residual. The main advantage of biguanide is the disinfectant concentration remains fairly stable so it requires less frequent adjustment than chlorine. No automatic chemical feeder is needed.

Biguanide is not an oxidizer and will not destroy organic wastes the way chlorine and bromine do. It must be used in conjunction with a peroxide shock treatment to prevent organic wastes from accumulating in pool water. Biguanide is incompatible with chlorine and most algicides. Chlorine in make-up water can cause clouding of biguanide pools. Biguanide increases the staining potential of dissolved metals in a pool so copper based algicides, copper ion generators, and pool heaters should not be used. Only chemicals recommended by the disinfectant manufacturers should be used.

Bromine

Bromine is chemically very similar to chlorine. Bromine compounds tend to react more slowly than chlorine compounds so bromine is generally more stable and less subject dissipation in sunlight. The dissociation of hypobromous acid into the bromine ion is less affected by pH than the corresponding reaction of chlorine. This makes bromine active over a larger range of pH than chlorine. Bromine will combine with ammonia to form bromamines similar to chlorine but unlike chloramines, bromamines are effective bactericides and do not produce the degree of odor and eye irritation associated with chloramines. Bromine is less affected by high temperature and nitrogen wastes than chlorine so it is particularly attractive for use in hot water spas. Bromine is more expensive than chlorine and has not yet received widespread acceptance by swimming pool operators.
The form of bromine most commonly used in pools and spas is the organic chemical bromo-chloro-dimethylhydantoin which contains both bromine and chlorine. It is marketed under various trade names and is generally in tablet form for use in erosion feeders..

Bromine residual should be maintained between 2 and 4 ppm.

Stabilizer – Cyanuric Acid

Hypochlorous acid is a highly unstable molecule which dissipates rapidly in the presence of sunlight. This results in considerable loss of free chlorine form pools exposed to sunlight. Proper stabilization of chlorine with cyanuric acid slows the rate of chlorine dissipation without appreciably sacrificing oxidation and disinfection activity. Reaction of free chlorine with cyanuric acid produces a form of combined chlorine (chlorimide) which is active enough to aid disinfection and show up as free chlorine residual on your test kit. Proper stabilization requires 30 to 50 ppm cyanuric acid. Outdoor pools should be initially treated with 40 ppm cyanuric acid. The chart below can be used to determine the amount of cyanuric acid needed.

Non-chlorine Shock Treatments

Several products have been developed which oxidize organics without the use of chlorine. Pools which use those products can accomplish the reduction of organics without closing the pool for any longer than it takes to dissolve and distribute the chemicals. Those products are more expensive than chlorine but may be preferred where it is necessary to keep a pool open.

Superchlorination

In order to prevent buildup of chloramines in the pool it is necessary to periodically add large amounts of new chlorine in an effort to pass the breakpoint. Public swimming pools should be supechlorinated about once a week. The amount of chlorine needed to reach the breakpoint will vary depending on the amount of organic material introduced by bathers and on the level of free chlorine maintained in the pool. If the amount of combined chlorine is known then the amount of new chlorine needed is ten times the amount of combined chlorine. When combined chlorine residual is not known, superchlorination is accomplished by adding 10 ppm of new chlorine to the pool. Ordinarily calcium hypochlorite at a dose of at least 1 lb. per 10,000 gallons is used for superchlorination.

Chlorine

The most commonly used disinfectant for swimming pools is chlorine. In its elemental form chlorine is a heavy greenish yellow gas which is so toxic that is has been used as a weapon in chemical warfare. Because of the extremely high potential for injury or death from improper use of chlorine gas, a number of chlorine compounds have been formulated to provide chlorine in forms that can be handled and used safely by swimming pool operators. The following are the three most commonly used in swimming pools.

Calcium Hypochlorite: granular or pelletized 65% available chlorine
Advantages: Disadvantages:
Relatively cheap Not stabilized – may lose strength if not tightly covered.
Can be mixed into solution for feed pumps Does not dissolve completely – leaves residue
Can be used in some specially designed erosion feeders

WARNING – do not use in closed tablet feeders designed to use other forms of chlorine

Sodium Hypochlorite: Liquid bleach 12.5% available chlorine
Advantages: Disadvantages:
Next to gas is the cheapest chlorine available Bulky and heavy
No dissolving required – no residue Not stabilized-loses strength rapidly
Can be used with chemical feed pumps High pH (10-13) raises pH of pool

Trichloroisocyanuric Acid: sticks or tablets 90% available chlorine
Advantages: Disadvantages:
Stabilized – chlorine doesn’t dissipate Cost slightly higher
Easy to handle Lowers pH – pH 2.8
Low cost, low maintenance erosion feeders Lowers total alkalinity
Highly concentrated – 90% available chlorine May elevate cyanuric acid levels

Calcium Hardness

Calcium hardness is a measure of the dissolved calcium salts in water. Under normal conditions this should not be a problem in properly operated swimming pools. Estimates of the proper range of calcium hardness vary widely but the ideal level for plaster pool is generally considered to be about 250 ppm.

If calcium hardness is very low then water may leach calcium from pool walls causing pitting of the plaster surface. Very high calcium hardness may contribute to scale formation and clouding of the water. To raise calcium hardness – add calcium chloride.

Total Alkalinity

Total alkalinity is closely associated with pH but rather than a measure of hydrogen ion concentration it is a measure of the ability of a solution to neutralize hydrogen ions. Expressed in parts per million (ppm), total alkalinity is the result of alkaline materials including carbonates, bicarbonates and hydroxides – mostly bicarbonates. This acid neutralizing (buffering) capacity of water is desirable because it helps prevent wide variations in pH whenever small amounts of acid or alkali are added to the pool. Total alkalinity is a measure of water’s resistance to change in pH.

Total alkalinity should be maintained in the range of 80 to 150 ppm.